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Abstract

In order to overcome some unavoidable factors, like shift of the part, that influence the crisp neural networks’ recognition,

the present study is dedicated in developing a novel fuzzy neural network (FNN), which integrates both the fuzzy set theory and

adaptive resonance theory 2 (ART2) neural network for grouping the parts into several families based on the image captured

from the vision sensor. The proposed network posses the fuzzy inputs as well as the fuzzy weights. The model evaluation results

showed that the proposed fuzzy neural network is able to provide more accurate results compared to the fuzzy self-organizing

feature maps (SOM) neural network [R.J. Kuo, S.S. Chi, P.W. Teng, Generalized part family formation through fuzzy self-

organizing feature map neural network, International Journal of Computers in Industrial Engineering, 40 (2001b) 79–100] and

fuzzy c-means algorithm.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In flexible manufacturing system (FMS), group

technology (GT) has been widely applied, since it

allows design and manufacturing to take advantage of

similarities between parts. A design engineer facing

the task of developing a new part can use GT code or

an image of the part to determine whether similar

parts exist in a computer-aided design (CAD) data-

base. Basically, the parts in the same family should
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have both similar design features and similar manu-

facturing features. In addition, the parts in the same

family usually need similar machining. Therefore, the

implementation of GT could decrease the complexity

of the design process and further shorten the design

life cycle as well as the manufacturing life cycle,

which is the basis of cell formation.

Recently, artificial neural networks (ANNs) have

also been employed in GT since they have shown very

promising results in areas of control and pattern

recognition [36,37]. Among them, most have consid-

ered only crisp input data instead of fuzzy data.

However, environmental conditions, like shift and

noise, can always decrease the recognition accuracy if
s 42 (2006) 89–103
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crisp data are used. Thus, fuzzy set theory, which has

been successfully applied in pattern recognition and

control [29], is utilized in combination with the

ANNs. To an extent, the present study attempts to

develop an intelligent GT system which consists of

five components: (1) image acquisition, (2) image

processing, (3) feature extraction, (4) pattern recog-

nition, and (5) parts clustering, wherein the first,

second, and third components intend to extract the

fuzzy features from the captured image, while the

fourth component clusters the parts with fuzzy

features into several families. A fuzzy adaptive

resonance theory 2 (ART2) neural network is pro-

posed to solve the parts clustering problem in the fifth

component. It is able to quickly and objectively group

the parts. The network is based on the ART2 neural

network [3]. However, two main differences are that

the proposed network processes the fuzzy inputs as

well as the fuzzy weights. The ART2 neural network

can solve that the general clustering neural networks

cannot cluster automatically and objectively (like self-

organizing feature map [SOM] neural network).

The model evaluation results for applying the parts

from Ref. [17] showed that the proposed fuzzy ART2

is better than fuzzy c-means and fuzzy SOM [25] as

considering both the shift of the parts and noise. The

remainder of this paper is organized as follows.

Section 2 provides some necessary background

information, while the proposed approach is presented

in Section 3. Section 4 summarizes the evaluation

results and discussion. Finally, the concluding

remarks are made in Section 5.
2. Background

This section briefly reviews the applications of

ANNs in GT. In addition, the fuzzy neural networks

(FNNs) are also discussed.

2.1. Applications of artificial neural networks in GT

The basic idea of GT is to decompose the

manufacturing system into various subsystems. This

can decrease the machining time and increase the

manufacturing flexibility. Several automated GT cod-

ing systems applying ANNs have been presented in the

last few years [10]. Kaparthi and Suresh [19,20] have
applied the ANNs for classification and coding for

rotational parts using a three-digit part description,

whereas Liao and Lee [32] developed an automated GT

coding and part family forming system that comprises

an adaptive resonance theory (ART1) neural network

and a feature-based CAD system. Awwal andKarim [1]

applied a Hopfield neural network to recognize the

shapes of part in the form of binary images. Four part

shapes were used to train a neural network, and nine

partial input shapes were provided to test the recog-

nition capability of network. It was found that the tested

shapes were identified correctly. In addition, Karmarthi

et al. [17] have utilized a feed-forward neural network

with back-propagation learning algorithm for the

retrieval of the part data, while Chung and Kusiak [7]

classified the machine parts based on their geometry

using a feed-forward neural network with a back-

propagation learning algorithm. Furthermore, Caudell

et al. [4] have demonstrated the feasibility of training an

ART1 neural network first to classify the cluster

designs into families and then to recall the family

when presented a similar design. This can dramatically

decrease the design life cycle by avoiding duplication

of the design efforts. Kuo at al. [25] integrated SOM

neural network and fuzzy set theory to develop a fuzzy

SOM system. They used this system to cluster GT parts

through CDD images captured. For more references,

the reader can refer to Chen and Cheng [6], Ham et al.

[10], Harish andGu [11], Kao andMoon [18], Lee at al.

[30], Lee and Wang [31], and Moon and Chi [38] for

more detailed information.

2.2. Fuzzy neural network

The ANNs [36] and fuzzy model [45,29] have been

applied in many application areas, each pairing its own

merits and disadvantages. Therefore, how to success-

fully combine these two approaches, ANNs and fuzzy

modeling, has become a very potential research area.

Generally, the traditional fuzzy system mentioned

above is based on experts’ knowledge. However, it is

not very objective. Besides, it is very difficult to acquire

robust knowledge and find available human experts

[15]. Recently, the ANN’s learning algorithm has been

applied to improve the performance of fuzzy system

and has been shown to be a new and promising

approach. Takagi and Hayashi [42] have introduced a

feed-forward ANN into the fuzzy inference wherein an



Fig. 1. The flow chart of the part clustering scheme.
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ANN represents a rule, while all membership functions

are represented by only one ANN. The algorithm is

divided into three major parts: (1) the partition of

inference rules, (2) the identification of IF parts, and (3)

the identification of THEN parts. Since each rule and

all the membership functions are represented by

different ANNs, they are trained separately. In other

words, the parameters cannot be updated concurrently.

Jang [14,15] and Jang and Sun [16] have proposed

a method which transforms the fuzzy inference system

into a functional equivalent adaptive network and then

employs the EBP-type algorithm to update the

premise parameters and the least square method to

identify the consequence parameters. Meanwhile,

Fukuda and Shibata [8], Shibata et al. [41], and Wang

and Mendel [43] have also presented similar methods.

Moreover, Nakayama et al. [39] have proposed a so-

called FNN, which has a special structure for realizing

a fuzzy inference system wherein each membership

function consists of one or two sigmoid functions for

each inference rules. Owing to lack of membership

function setup procedure, the rule determination and

the membership function setup are decided by the so-

called experts where the decision is very subjective.

Lin and Lee [33] have proposed a so-called neural-

network-based fuzzy logic control system (NN-FLCS)

wherein they introduced the low-level learning power

of neural networks in fuzzy logic system and provided

a high-level human-understandable meaning to nor-

mal connectionist architecture. In addition, Kuo and

Cohen [27] have also introduced a feed-forward ANN

into the fuzzy inference represented by Takagi’s fuzzy

modeling and applied it to a multisenior integration,

whereas Buckley and Hayashi [2] have surveyed

recent findings on learning algorithm and applications

of FNNs. Furthermore, Buckley and Hayashi have

also introduced several methods in the error back-

propagation learning algorithms.

The abovementioned FNNs are only appropriate for

digital data. However, the expert’s knowledge is

always of fuzzy type. Thus, some researchers have

attempted to address the problem. Ishibuchi et al.

[12,13] have proposed the learning methods of neural

networks to utilize not only the digital data but also the

expert knowledge represented by fuzzy if–then rules.

Kuo and Xue [26] have proposed a novel FNN whose

inputs, outputs, and weights are all asymmetric

Gaussian functions. The learning algorithm is an
EBP-type learning procedure. Kuo et al. continued to

improve the proposed FNN by combining the genetic

algorithm [24,23]. Kuo et al. also presented a fuzzy

unsupervised neural network, fuzzy SOM

[25,21,22,44] for grouping the parts. In addition, Lin

and Lu [34] and Lin [35] have also presented an FNN

capable of handling both fuzzy inputs and outputs.
3. Methodology

Section 2 has presented the relevance of GT as well

as some necessary information. The proposed cluster-

ing scheme is presented in more detail in this section.

Fig. 1 illustrates the flowchart of the parts clustering

scheme based on the fuzzy adaptive resonance theory

2 (fuzzy ART2) neural network. It consists of five

components: (1) image acquisition, (2) image pro-

cessing, (3) feature extraction, (4) pattern recognition,

and (5) parts clustering. The following sections

present a more detailed discussion of each component.

3.1. Image acquisition

The main purpose of this setup is to capture the part

image by using the charge-coupled-device (CCD)

camera. In order to reveal the influence of different

kinds of shifts and noise, the corresponding images are

generated.

3.2. Image processing

Since the image from the vision system may be

distorted because of environmental conditions, this



Fig. 2. Segmentation of image.
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step mainly employs the image processing technique to

improve the quality of captured images. This can lead

to better image information. The present study applied

the threshold method [9], which is one of the most

frequently applied image segmentation techniques. The

main concept of this technique is to transform the

image brightness to binary values, which represent the

brightness and the darkness, respectively. If the bright-

ness value is over the threshold value, then it is 0;

otherwise, it is 1. During the binary process, the image

gray distribution histogram reveals that the image

consists of two components, the object and the back-

ground gray models. In order to extract the object from

the background, it is necessary to specify a threshold

value, k*, which can separate the object from the

backgroundmodels. If the corresponding value of pixel

(x,y), whose gray value is g(x,y), is larger than k*, then
this pixel is the object pixel; otherwise, it is background

pixel. The formula is as follows:

g x;yð Þ ¼ b0; g x;yð ÞNk4
b1; g x;yð ÞVk4

�
ð1Þ

where b0 and b1 represent the object and the back-

ground’s gray values, respectively. Thus, we can have
Fig. 3. Processing of
an image which only processes two values, 0 or 1.

Besides, it is much easier to recognize the object and

the background. Thus, the only thing to do is to find the

pixels of the object, if the main purpose is to discuss the

object’s image.

3.3. Feature extraction

Before implementing the fuzzy ART2 neural

network, the features are first extracted from the

image. The main concept is to cut the acquired

image into several blocks. For instance, the binary

image (30�24) is cut into 20 (5�4) blocks. Thus,

each block consists of 36 (6�6) pixels, as shown

in Fig. 2, and represents a feature of the image,

which is calculated by summing the binary values

of pixels inside the block. However, due to the

geometry of the part, it is difficult to determine the

membership of some pixels, as illustrated in Fig. 3.

Thus, the Fuzzy ART2 neural network developed in

this study can overcome the situation mentioned

earlier. In other words, the features are fuzzy

instead of crisp; for instance, the total value of

the circled block in Fig. 3 is between 15 and 20.

Thus, the feature extraction procedures can be

listed as follows based on the abovementioned

concept.

Step 1. Segment the image into several blocks.

Step 2. Calculate the fuzzy interval for each

block.

Step 3. Normalize the interval in [0,1]. In Fig. 3,

the normalized interval is [0.4117,

0.5556].

Step 4. Determine the average index. The average

index is determined by the geometric mean

of pessimistic (l) and optimistic (u) indices.

If the pessimistic index is equal to 0, then
fuzzy blocks.



Fig. 4. Asymmetric bell-shaped fuzzy number.
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apply arithmetic mean. The calculation

procedure is as follows:

loptimal ¼ l � uð Þ1=2 ; if l p 0

l þ uð Þ=2 ; if l ¼ 0

�
ð2Þ

This average index ( l) is the one with the member-

ship value of 1. Thus, we can determine the

triangular fuzzy number Ã= (l, l, u).
Step 5. Transform the data.

The present study employs the asymmetric bell-

shaped fuzzy number, as shown in Fig. 4, since it

can accelerate the convergence of the network

[26]. The asymmetric bell-shaped fuzzy number,

B̃=( l, rL, rR)L�R, is determined by the pessi-

mistic index and optimistic index of the fuzzy

number Ã=(l*, l*, u*), as shown in Step 4. The

formulation is as follows:

l ¼ average indexðmembership value is 1Þ ð3Þ

rL ¼ l4� l4

3
; ð4Þ

rR ¼ u4� l4
3

; ð5Þ

B̃B xð Þ ¼
exp � 1

2

x� l
rL

� �2� �
; xbl

1 ; x ¼ l

exp � 1

2

x� l
rR

� �2� �
; otherwise

8>>>><
>>>>:

ð6Þ
where l, rL, and rR represent the mean of fuzzy

number B̃, left width and right width, respectively. In

summary, the main objective of image processing and

transformation is to obtain the fuzzy input data for the

fuzzy ART2 neural network.

3.4. Pattern recognition (FNN)

After the features of the part image have been

extracted, the proposed FNN called the fuzzy ART2

neural network is employed to automatically cluster the

parts. Most of the FNNs proposed in the literatures are

supervised and they only handle the actual real inputs

and outputs. Although Lin [35], Ishibuchi et al. [13],

Kuo and Xue [26], and Kuo et al. [24] have presented

the FNNs with fuzzy inputs, weights, and outputs, yet

they are all supervised networks. However, for the

purpose of clustering, supervised networks are not

feasible. Although the unsupervised neural network

proposed in [25] is fuzzy SOM, it yet needs visual

examination to determine the number of clusters. The

proposed fuzzy ART2 does not have the abovemen-

tioned shortcomings. Like Kuo et al.’s previous works,

both the fuzzy inputs and weights are all asymmetric

fuzzy numbers defined as Ã=( l, rL, rR)L�R and

ÃA xð Þ ¼
exp � 1

2

x� l
rL

� �2� �
; xbl

1 ; x ¼ l

exp � 1

2

x� l
rR

� �2� �
; otherwise

8>>>><
>>>>:

ð7Þ

where l, rL, and rR represent the mean, left width,

and right width, respectively. Since the input vectors

and connection weight vectors of the fuzzy ART2

neural network are fuzzified, the addition, multiplica-

tion, and nonlinear mapping of fuzzy number numbers

are necessary for defining the proposed network.

3.4.1. Operations of fuzzy numbers

The fuzzy operations are defined as follows:

lx̃xþỸY zð Þ ¼ max lX̃X xð Þ1lỸY yð Þjz ¼ xþ y
� �

ð8Þ

lX̃X dỸY zð Þ ¼ max lX̃X xð Þ1lỸY yð Þjz ¼ xdy
� �

ð9Þ

l
f Netð Þ zð Þ ¼ max

�
l
Net

xð Þjz ¼ f xð Þ
�

ð10Þ



Fig. 5. The structure of fuzzy ART2 neural network.
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where X̃, Ỹ, and Z̃ are all fuzzy numbers, l( S) denotes
the membership function of each fuzzy number, and

1 is the minimum operator. The a-cut of the fuzzy

numbers is X̃ which is defend as:

X̃X a½ � ¼ xjlX̃Xza;xaR
� �

for 0baV1 ð11Þ
After a-cutting the fuzzy number, the above equation

can be rewritten as:

X̃X a½ � ¼ X a½ �L;X a½ �U
h i

ð12Þ

where X [ a]L and X [ a]U are the upper and the lower

bounds of the a-level set. In addition, the correspond-

ing operators are summarized in the following

equations.

X̃X a½ � þ ỸY a½ � ¼ X a½ �L;X a½ �U
h i

þ Y a½ �L; Y a½ �U
h i

¼ X a½ �L þ Y a½ �L
h i

; X a½ �U þ Y a½ �U
h i

ð13Þ

X̃X a½ � � ỸY a½ � ¼ X a½ �L;X a½ �U
h i

� Y a½ �L; Y a½ �U
h i

¼ X a½ �L;X a½ �U
h i

þ � Y a½ �U; � Y a½ �L
h i

¼ X a½ �L � Y a½ �U ;X a½ �U � Y a½ �L
h i

ð14Þ

X̃X a½ �dỸY a½ � ¼ X a½ �L;X a½ �U
h i

d Y a½ �L; Y a½ �U
h i

¼
h
min
n
X a½ �LdY a½ �L;X a½ �LdY a½ �U ;

X a½ �U dY a½ �L;X a½ �U dY a½ �U
o
;

max
n
X a½ �LdY a½ �L;X a½ �LdY a½ �U ;X a½ �U

dY a½ �L;X a½ �U dY a½ �U
oi

ð15Þ

X̃X a½ �=ỸY a½ � ¼ X a½ �L;X a½ �U
h i

= Y a½ �L; Y a½ �U
h i

¼
h
min
n
X a½ �L=Y a½ �L;X a½ �L=Y a½ �U ;

X a½ �U=Y a½ �L=X a½ �U=Y a½ �U
o
;

max
n
X a½ �L=Y a½ �L;X a½ �L=Y a½ �U ;

X a½ �U= Y a½ �L;X a½ �U=Y a½ �U
oi

ð16Þ

f Net a½ �
	 


¼ f
	�
Net a½ �L;Net a�U

�� 

¼
�
f
	
Net a½ �L



; f
	
Net a½ �U


�
ð17Þ
Thus, under the assumption of 0 VY [ a]L VY [ a]U,
X̃[ a] d Ỹ[ a] can be rewritten as:h
min X a½ �LdY a½ �L;X a½ �LdY a½ �U
n o

;

max X a½ �U dY a½ �L;X a½ �U dY a½ �U
n oi

ð18Þ

3.4.2. Network structure

Fig. 5 presents the framework of fuzzy ART2

neural network. The input and output relation of the

proposed fuzzy ART2 neural network is defined by

extension principle and can be written as follows:

3.4.2.1. Input layer (F1 layer)

ÕOpi ¼ X̃X pi; i ¼ 1; 2; N ; n: ð19Þ

The F1 layer consists of six types of units (the w, x,

u, v, p, and q units):

w̃wkpi; i ¼ 1; 2; N ; n ð20Þ
x̃xkpi; i ¼ 1; 2; N ; n ð21Þ
ũukpi; i ¼ 1; 2; N ; n ð22Þ
ṽvkpi; i ¼ 1; 2; N ; n ð23Þ
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p̃pkpi; i ¼ 1; 2; N ; n ð24Þ
q̃qkpi; i ¼ 1; 2; N ; n ð25Þ

3.4.2.2. Weight layer. Theweight layer consists of two

types of weights, down–top and top–down weights.

Down� top weight: b̃bij; j ¼ 1; 2; N ;m ð26Þ
Top� down weight: t̃t ji; j ¼ 1; 2; N ;m ð27Þ

3.4.2.3. Output layer (F2 layer)

(1) Calculate the fuzzy vector between the fuzzy

weight, down–top, and p unit fuzzy vector of F1

layer for each input node. The fuzzy vector is

defined as:

T̃T j ¼
Y

p̃pij �
Y

b̃bij ð28Þ
where � is the fuzzy delete operation.

(2) Apply the transformation method proposed by

Chen and Hwang [5] to defuzzify the fuzzy

vector and compute the defuzzified values gij.

(3) Choose the winner with the maximum Tj.

Tj ¼
X
i

gij; ð29Þ� �

Tj4 ¼ max

j
Tj ð30Þ

3.4.2.4. Reset or resonance layer. The layer will

decide if the inputting fuzzy vector is breset Q or breso-
nance Q through vigilance parameter testing. The check

for a reset gives trt. However, (trt+e)bq for a valid

value of q ( q is the vigilance parameter), so the win-

ning cluster unit will be allowed to learn current pattern.

3.4.3. Learning algorithm

For the above equations, the winner unit is

calculated for fuzzy inputs and the fuzzy weights.

The fuzzy relation of network structure and parame-

ters definition can be found as follows.

3.4.3.1. Parameters definition

n Number of input units.

m Number of cluster units.

a, b Fixed weights in the F1 layer.

c Fixed weight used in testing for reset.

d Activation of winning of F2 units.

e Small parameter introduced to prevent division

by zero where the norm of a vector is zero.

h Noise suppression parameter.

q Vigilance parameter.
3.4.3.2. Input layer (F1 layer)

X̃X i a½ � ¼ X i a½ �L;X i a½ �U
h i

; i ¼ 1; 2 N ; n ð31Þ
Y

X̃X a½ � ¼ X̃X 1 a½ �; N ; X̃X i a½ �; N ; X̃X n a½ �
	 


¼
�

X 1 a½ �L;X 1 a½ �U
h i

; N ; X i a½ �L;X i a½ �U
h i

; N

X n a½ �L;X n a½ �U
h i�

ð32Þ

Six types of units:

The w unit:

Y

w̃wi a½ � ¼ X̃X 1 a½ �; N ; X̃X i a½ �; N ; X̃X n a½ �
	 

þ a ũu1 a½ �; N ; ũui a½ �; N ; ũun a½ �ð Þ

¼
�

X 1 a½ �L;X 1 a½ �U
h i

; N ; X i a½ �L;X i a½ �U
h i

; N

X n a½ �L;X n a½ �U
h i�

þ
�

au1 a½ �L; au1 a½ �U
h i

; N ;

aui a½ �L; aui a½ �U
h i

; N aun a½ �L; aun a½ �U
h i�

¼ X 1 a½ �L þ au1 a½ �L;X 1 a½ �Uþ au1 a½ �U
h i

; N ;
�
X i a½ �Lþaui a½ �L;X i a½ �U þ aui a½ �U
h i

; N ;h
X n a½ �L þ aun a½ �L;X n a½ �U þ aun a½ �U

i�
¼
�
w1 a½ �L;w1 a½ �U
h i

; N ;
h
wi a½ �L;wi a½ �U

i
; Nh

wn a½ �L;wn a½ �U
i�
¼ w̃w1 a½ �; N ; w̃wi a½ �; N ; w̃wn a½ �ð Þ

ð33Þ

The x unit:

Y

x̃xi a½ � ¼
Y
w̃w

eþ jjYw̃wjj
¼

�
wi a½ �L;wi a½ �U

�
eþ

� X
i

wi a½ �L;wi a½ �U
n o2

�1=2

¼
w1 a½ �L;w1 a½ �U
h i

eþ W i a½ �L;W i a½ �U
h i ;

W a½ � ¼
X

w a½ � ¼
wi a½ �L;wi a½ �U
h i

eþW i a½ �L; eþW i a½ �U
h i

¼ wi a½ �L

eþW i a½ �U
;

wi a½ �U

eþW i a½ �L

" #

¼ x̃x1 a½ �; N ; x̃xi a½ �; N ; x̃xn a½ �ð Þ ð34Þ
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The u unit:

Y

ũui a½ � ¼
Y
ṽv

eþ t
Y

ṽvt
¼

vi a½ �L;vi a½ �U
h i

eþ
X
i

vi a½ �L;vi a½ �U
n o2

 !1=2

¼
vi a½ �L;vi a½ �U
h i

eþ V i a½ �L;V i a½ �U
h i ; V a½ � ¼

X
v a½ �

¼
vi a½ �L;vi a½ �U
h i

eþ V i a½ �L;eþ V i a½ �U
h i

¼ vi a½ �L

eþ V i a½ �U
;

vi a½ �U

eþ V i a½ �L

" #

¼ ũu1 a½ �; N ; ũui a½ �; N ; ũun a½ �ð Þ ð35Þ

The q unit:

Y

q̃qi a½ � ¼
Y
p̃p

eþ t
Y
p̃pt

¼
pi a½ �L; pi a½ �U
h i

e; e½ � þ
X
i

pi a½ �L; pi a½ �U
n o2

 !1=2

¼
p1 a½ �L; p1 a½ �U
h i

eþ Pi a½ �L;Pi a½ �U
h i ; P a½ � ¼

X
p a½ �

¼
p1 a½ �L; p1 a½ �U
h i

eþ Pi a½ �L; eþ Pi a½ �U
h i

¼ pi a½ �L

eþ Pi a½ �U
;

pi a½ �U

eþ Pi a½ �L

" #

¼ q̃q1 a½ �; N ; q̃qi a½ �; N ; q̃qn a½ �ð Þ ð36Þ
The p unit:

Y

p̃pi a½ � ¼ ũu1 a½ �; N ; ũui a½ �; N ; ũun a½ �ð Þ
þ d t̃t1 a½ �; N ; t̃t i a½ �; N ; t̃t n a½ �ð Þ

¼
�h
u1 a½ �L; u1 a½ �U

i
; N ; ui a½ �L; ui a½ �U
h i

; N ;

un a½ �L; un a½ �U
h i�

þ dt1 a½ �L; dt1 a½ �U
h i

; N ;
�

dti a½ �L; dti a½ �U
h i

; N dtn a½ �L; dtn a½ �U
h i�

¼
�

u1 a½ �L þ dt1 a½ �L; u1 a½ �U þ dt1 a½ �U
h i

; N ;

ui a½ �L þ dti a½ �L; ui a½ �U þ dti a½ �U
h i

; N ;h
un a½ �L þ dtn a½ �L; un a½ �U þ dtn a½ �U

i�
¼ p1 a½ �L; p1 a½ �U

h i
; N ; pi a½ �L; pi a½ �U
h i

; N
�
pn a½ �L; pn a½ �U
h i�
¼ p̃p1 a½ �; N ; p̃pi a½ �; N ; p̃pn a½ �ð Þ ð37Þ

The v unit:

For this unit, apply the transformation method

proposed by Chen and Hwang [5] to defuzzify x̃ and q̃

and then test the defuzzified numbers through the

activation functions shown below:

f Xð Þ ¼ X if Xzh
0 if Xbh

�
ð38Þ

f Qð Þ ¼ Q if Qzh
0 if Qbh

�
ð39Þ

This functions treats any signal, which is less than h
as noise and suppresses it (set it to zero and fuzzy

numbers to [0,0]).

3.4.3.3. Weight layer

Down� top weight: b̃bij a½ �

¼ b̃ij a½ �L; bij a½ �U �; j ¼ 1; 2; N ;m
h

ð40Þ

Top� down weight: t̃t ji a½ �

¼ t̃ ji a½ �L; t ji a½ �U �; j ¼ 1; 2; N ;m
h

ð41Þ



Fig. 6. The fuzzy ART2 neural network learning algorithm.
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Transform the asymmetric fuzzy numbers:

bij a½ �L ¼ lij � rL
ijd � 2lnað Þ1=2; if xVl

bij a½ �U ¼ lij þ rR
ij d � 2lnað Þ1=2; if xNl

(
ð42Þ

t ji a½ �L ¼ lji � rL
jid � 2lnað Þ1=2; if xVl

t ji a½ �U ¼ lji þ rR
ji d � 2lnað Þ1=2; if xNl

(
ð43Þ

3.4.3.4. Output layer (F2 layer)

(1) Calculate the fuzzy vector between the fuzzy

weight, down–top, and p unit fuzzy vector of F1

layer for each input node. The fuzzy vector is

defined as

T̃T j ¼
Y

p̃pij �
Y

b̃b
ij

¼ pij a½ �L; pij a½ �U
h i

�
h
bij a½ �L; bij a½ �U

i
¼ pji a½ �Ldbij a½ �L
h i

; pi a½ �U ; bij a½ �U
h ih i

¼ T j a½ �L; T j a½ �U
h i

ð44Þ

(2) Apply the transformation method proposed by

Chen and Hwang [5] to defuzzify the fuzzy

vector and compute the defuzzified values gij.

(3) Choose the winner with the maximum Tj.

3.4.3.5. Reset or resonance layer. This layer decides

whether the inputted fuzzy vector is breset Q or

bresonance Q through vigilance parameter testing. The

check for a reset gives trt.

trt ¼ tYũþ c Yp̃t

eþ tYũtþ c t Yp̃t

¼ t ũui a½ �; N ; ũui a½ �; N ; ũun a½ �ð Þ þ c p̃pi a½ �; N ; p̃pi a½ �; N ; p̃pn a½ �ð Þt

eþ
X
i

ui a½ �L; ui a½ �U
n o2

 !1=2

þ c
X
i

pi a½ �L; pi a½ �U
n o2

 !1=2

¼

X
i

ui a½ �L þ cp a½ �L; ui a½ �U þ cp a½ �U
� �n o2

 !1=2

eþ U i a½ �L þ cPi a½ �L
h i

; eþ U i a½ �U þ cPi a½ �U
h i� �

¼ ui þ cp a½ �L

eþ U i a½ �U þ cPi a½ �U
;

ui þ cp a½ �U

eþ U i a½ �L þ cPi a½ �L

#"

ð45Þ
If the layer is resonant, modify the weights as below:

b̃bij ¼
ũuij

1� d
¼ uij a½ �L

1� d
;
uij a½ �U

1� d

" #
ð46Þ

t̃t ji ¼
ũuji

1� d
¼ uij a½ �L

1� d
;
uij a½ �U

1� d

" #
ð47Þ

3.4.4. Learning procedures

The learning procedures (Fig. 6) of the fuzzy

ART2 neural network are summarized as follows:

Step 1. Input the fuzzy vector into F1 layer and

compute the six units until the u or p unit

value is convergent.

Step 2. Calculate the fuzzy vector between the fuzzy

weight, down–top, and p unit fuzzy vector of

F1 layer for each input node. Find the maxi-

mum value and decide which is the winner.

Step 3. Input the fuzzy vector into F1 layer and

compute the six units until the u unit value

is convergent again.

Step 4. Test the vigilance parameter and then decide

whether the layer state is breset Q or

bresonance. Q If the state is breset, Q set the
winner’s Tj to be zero and repeat Step 2 to

find the other winner.



R.J. Kuo et al. / Decision Support Systems 42 (2006) 89–10398
If all winners do not pass the vigilance parameter

test, it is necessary to create a new cluster and add

the corresponding weights. If the state is

bresonance Q, just make the current fuzzy input

belong to this cluster and modify the corresponding

weights.
Fig. 7. Sixteen p
4. Model evaluation results and discussion

As presented earlier, the fuzzy ART2 can cluster

the parts with fuzzy features into several families. The

binary image is cut into 20 blocks. In accord with a-
cuts, each fuzzy input has the corresponding interval
art images.



Table 1

Clustering results of fuzzy ART2

a-cut level a, b=0.5, d=0.9, c=0.01, q=0.94, h=0.16

Accurate number Error number Accurate rate (%

0 823 177 0.823

0.2 866 134 0.866

0.4 887 113 0.892

0.6 892 108 0.884

0.8 853 147 0.853

Fig. 8. Four part families and their corresponding binary images.
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for calculation. Finally, the clustering result can be

obtained from the output array. The parameter setup is

defined as follows:

(1) Input layer: the number of input nodes is 20, since

the image is cut into 20 blocks and the a-cuts

levels are 0, 0.2, 0.4, 0.6, and 0.8, respectively.

(2) The fixed weight in F1 layer parameters:

a=b=0.05.

(3) The fixed weight used in testing for reset

parameter: c=0.1.

(4) The activation of winning F2 unit parameter:

d=0.9.

(5) The noise suppression parameter: h=1Mn=0.16.
(6) The vigilance parameter: q=0.94.
(7) Initial weight: randomly set up the top–down

and down–top weights between [�0.3, 0.3] in

accord with the research of Lee [28].
)



Fig. 9. Clear output map.
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(8) Stop learning as all input data have been

clustered.

Basically, the above parameter setup is determined

by several times of testing and references’ suggestions.

4.1. Training the parts

The parts used to verify the proposed scheme are

adapted from Kamarthi et al. [17], as shown in Fig. 7.

The parts are further classified into four families, as

illustrated in Fig. 8. For the parts training, the features

of the standard parts are first applied to find the best

parameter setup. Randomly choose 1000 samples for

each a-cuts. The training performance and the

accurate rate are listed in Table 1. The accurate rate

is defined as:

CR% ¼ CN

TN
� 100%; ð48Þ

where CR, CN, and TN are the correct rate, the

number of parts being correctly clustered, and the total

number of parts, respectively.

The clustering results indicate that the accurate rate

is between 0.8 and 0.9. It represents that the fuzzy

ART2 neural network is stable and has higher accuracy.

4.2. The influence of shift on clustering

During the image acquisition, it is very difficult to

keep the part exactly in the same position on the

working table. Shift of the part is unavoidable.
Table 2

The influence of shift on the part clustering

Rotational angle Accurate rate (%)

Fuzzy c-means Fuzzy SOM Fuzzy ART2

08 80.675 100 100

18 82.225 100 100

28 80.669 100 100

38 81.256 99.780 99.433

48 82.194 94.103 96.449

58 82.644 93.750 92.359

68 81.369 92.612 91.133

78 81.477 88.051 90.642

88 83.881 87.500 87.226

98 83.881 87.119 85.735

108 86.181 81.250 84.703

Average accurate rate 82.405 93.106 93.425
However, a small angle of shift may cause the image

acquired to be not exactly the same as the training

sample. Thus, here, different angles of shift are

generated in order to examine the shift. Besides

testing the proposed network, the present study also

compares fuzzy SOM neural network [25]. Table 2

presents the analytical results.

Table 2 reveals that averagely, both fuzzy SOM

and fuzzy ART2 can provide more adequate recog-

nition than fuzzy c-means [40]. If the shifting angle is

not very large, these two methods can cluster almost

accurately. However, if the shifting angle is very large,

say 108, then their results are not as good as fuzzy c-

means. According to the average accurate rate, fuzzy

ART2 is better than fuzzy SOM. But fuzzy SOM is

based on SOM neural network, it is necessary to make

the visual examination for the output array. Some-
Fig. 10. Not clear output map.



Table 3

The influence of noise on the part clustering

The degree of

noise (%)

Accurate rate (%)

Fuzzy

c-means

Fuzzy

SOM

Fuzzy

ART2

0 80.675 100 100

5 71.525 98.653 99.422

10 64.574 87.791 90.207

15 53.186 75.082 82.925

20 53.688 62.507 66.687

25 53.131 56.259 59.039

30 53.425 52.254 56.942

Average accurate rate 61.458 76.078 79.317
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times it is quite difficult to determine the number of

clusters by examining the output array. Such method

may create more deviations and is not objective. If the

distribution of samples is clear like Fig. 9, it is easy to

make the decision. But, the researchers will have

difficulty in determining the number of clusters if

the output array is like Fig. 10. In addition, fuzzy

ART compares similarities of patterns. It can

cluster automatically and objectively. It is more

reasonable to apply fuzzy ART instead of fuzzy

SOM for practical reason.

4.3. The influence of noise on clustering

In order to find out the influence of noise on

clustering, it is necessary to create the noisy images for

the paper. First, the noise ratio is prespecified. If the

noise ratio is n, then define the large random value, L,

which is the product of pixel number and noise ratio.

Then use a PC to generate the random number in [1,L].

If a pixel is selected, change its pixel value.

Table 3 indicates that both fuzzy SOM and fuzzy

ART2 are sensitive to noise. As the noise level is not

very large, they can cluster well. But if the noise level

is very large, they will make bigger bias. According to

the average accurate rate, fuzzy ART2 is still better

than fuzzy SOM. Besides, like mentioned in the above

subsection, fuzzy ART2 can automatically cluster the

samples without visual examination.
5. Conclusions

The present study has demonstrated a novel fuzzy

neural network, the Fuzzy ART2 neural network, for
clustering parts into several families. The fuzzy ART2

neural network can correctly cluster the parts as

Kamarthi et al. [17] specified. Even under the shift

and noise conditions, fuzzy ART2 also can have very

promising results compared with fuzzy SOM and

fuzzy c-means. The testing results also indicate that

the network is more stable and accurate. In addition,

the Fuzzy ART2 neural network, which is a kind of

unsupervised network, does not need a very long

training time. It can fit the requirements of the

industries. Besides the current application, the fuzzy

ART2 neural network has been applied in other areas,

e.g., marketing segmentation, and got very promising

results.
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